Increasing Yield Using Partially-Programmable Circuits

Shigeru YAMASHITA†, Hiroaki YOSHIDA††, and Masahiro FUJITA†††

† College of Information Science and Engineering, Ritsumeikan University
1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan
†† VLSI Design and Education Center(VDEC), University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan
E-mail: †ger@cs.ritsumei.ac.jp, ††hiroaki@cad.t.u-tokyo.ac.jp, †††fujita@ee.t.u-tokyo.ac.jp

Abstract This paper proposes to use Partially-Programmable Circuits (PPCs) which are obtained from conventional logic circuits by replacing their sub-circuits with LUTs. If a connection in an PPC becomes redundant by changing the functionality of some LUTs, the connection is considered to be robust to defects because even if there are some defects at the connection, the circuit works properly by changing the functionality of some LUTs appropriately. To increase the number of such robust connections, we add some redundant connections to LUTs. We find such redundant connection by using functional flexibility represented by SPFDs and/or CSPFs. From the result of our preliminary experiments, we consider our approach is promising.

Key words yield, LUT, Partially-Programmable Circuit (PPC), SPFD

1 Introduction

It has been considered that there will be a sharp increase in manufacturing defect levels in future electronic technologies [1] [2]. Thus, there has been a considerable interest in practical techniques to increase the yield of LSIs [3]–[5]. At the logic design level, a general method is to add space redundancy, e.g., Triple Modular Redundancy (TMR). If we are considering only manufacturing defects, another possible way to increase the yield is Double Modular Redundancy (DMR); we select a module without defect between the two identical modules after the LSI test. If we use FPGAs, we can have much more ways to bypass the defects after the LSI manufacture [6].

However, the above methods obviously have disadvantages: area overhead and/or performance degradation. In this paper, we propose a totally different approach to increase the yield with (possibly) lower overhead: we make a logic circuit from conventional logic circuits by replacing its sub-circuits with Look-Up Tables (LUTs) and Multiplexers (MUXs). Then, if we detect some defects (by the LSI test) in it, we reconfigure the functionality of some LUTs and/or CSPFs. From the result of our preliminary experiments, we consider our approach is promising.
only replaces some parts of the circuit into LUTs. Therefore, the area and performance overhead could be small. Obviously we cannot use a PPC like an FPGA to reconfigure the functionality at any time; a PPC can only be reconfigured to bypass some (not all) defects, and thus the area/performance overhead would be lower than an FPGA.

In this paper, we suppose a single defect at a connection, e.g., stuck-at-0/1 fault. Then, we say a connection is robust to stuck-at-0 or stuck-at-1, if we can bypass the fault (by reconfiguring the circuit) to stuck-at-0 or stuck-at-1, respectively. Note that if a connection is robust to both stuck-at-0 and stuck-at-1, we can deal with any situation where the logic value at the connection becomes incorrect value, and we call such a connection simply robust. Note also that we can bypass any defect at a logic gate if its fanout connections are all robust. In this paper, we mainly consider the ratio of robust connections in a designed circuit because the ratio is obviously related to the yield. The ratio is 100% for the above DMR scheme since one of the duplicated modules should work correctly if there is only a single fault in the circuit. On the other hand, since our scheme does not use as much overhead as the DMR scheme, we cannot expect such a high ratio; even so we can expect that our scheme achieve a reasonably high ratio with relatively low overhead as our preliminary experiments show.

To increase the ratio of robust connections in a designed PPC, our proposed method is to add some redundant connections in advance. To find appropriate redundant wires, our circuit transformation utilizes the notion of SPFD (Set of Pairs of Functions to be Distinguished) [7] and CSPFs (Compatible Sets of Permissible Functions) [8].

In the reminder of this paper, first we review the notion of SPFDs and CSPFs in Section 2. Next we provide an overview of our scheme in Section 3 by using a motivational example. Then we propose a circuit transformation method in Section 4. We then provide some preliminary experimental results in Section 5 followed by our conclusions in Section 6.

2 Preliminaries

2.1 Basic Terminologies

We use the following notation in this paper.

- \(N_i \): represents a node in a network.
- \(C_{i,j} \): represents a connection from \(N_i \)'s output to one of \(N_j \)'s inputs. If there is \(C_{i,j} \), \(N_i \) is called a fanin of \(N_j \), and \(N_j \) is called a fanout of \(N_i \). Additionally, if there is a path from node \(N_i \) to node \(N_j \), node \(N_i \) is called a transitive fanin of node \(N_j \), and node \(N_j \) is called a transitive fanout of node \(N_i \).
- \(f_i \): represents the logic function at the output of \(N_i \) with respect to the primary inputs of the network. This is sometimes called the “global” function of the node.

We use the “functional flexibility” of logic functions:

- The condition in which an alternative function can replace the global function at the output of \(N_i \) is called the “functional flexibility of \(N_i \).”
- The condition in which an alternative function can replace the global function used for an input to \(N_j \), which corresponds to \(C_{i,j} \), is called the “functional flexibility of \(C_{i,j} \).”

Note that the functional flexibility of \(C_{i,j} \) generally differs from that of \(C_{i,k} \) although the global logic functions corresponds to \(C_{i,j} \) and \(C_{i,k} \) are the same as \(f_i \).

To represent the functional flexibility for a conventional gate, we usually use an incompletely specified function whose ON-Set, OFF-Set and DC (Don’t Care)-Set correspond to the input patterns, where the function must become 1, 0, and don’t care. There are many calculation methods for such functional flexibility, e.g., satisfiability don’t cares (SDC) [9], observability don’t cares (ODC) [9], compatible observability don’t cares (CODC) [10], [11], and compatible sets of permissible functions (CSPFs) [8]. In this paper, we use CSPFs among them, but our procedure can be modified to work with any one of methods to calculate functional flexibility.

To represent the functional flexibility for LUTs, we can have much more freedom because we can change the functionality of LUTs. To utilize such flexibility, we use Sets of Pairs of Functions to be Distinguished (SPFDs)[7].

The following notations are used for them:

- \(SPFD_i \) (CSPF\(_i\)) is an SPFD (CSPF) that represents the functional flexibility of \(N_i \), respectively.
- \(SPFD_{i,j} \) (CSPF\(_{i,j}\)) is an SPFD (CSPF) that represents the functional flexibility of \(C_{i,j} \), respectively.

Note that \(SPFD_i \) and \(SPFD_{i,j} \) implicitly assume that \(N_i \) is an LUT since we do not use SPFDs for input connections of conventional gates. \(SPFD_i \) (CSPF\(_i\)) and \(SPFD_{i,j} \) (CSPF\(_{i,j}\)) are sometimes referred to simply as “the SPFD (CSPF) of the node” and “the SPFD (CSPF) of the connection,” respectively.

In the following, we review the basic concept of CSPFs and SPFDs.

2.2 CSPF

Figure 2 shows an example for CSPFs [8] for the network shown in Figure 1. For simplicity, we suppose that the net-
work has only three primary inputs x_1, x_2, and x_3. If f_1, f_2, and f_3 are shown as in Figure 2, internal logic of N_4 is f_4 is calculated by $(f_1 \cdot f_2 \cdot f_3 + \overline{f_1} \cdot \overline{f_2} \cdot f_3)$ as shown in Figure 2. Then, if the functional flexibility of N_4 is represented by CSPF$_4$ in Figure 2, the functional flexibilities of C_1, C_2, and C_3 are calculated as CSPF$_1$, CSPF$_2$, and CSPF$_3$ in Figure 2, respectively, by the method in the paper [8]. In the example, as long as f_1, f_2, and f_3 change within the flexibilities represented by CSPF$_1$, CSPF$_2$, and CSPF$_3$, it is guaranteed that f_4 changes within the flexibility represented by CSPF$_4$.

In this paper, we represent a CSPF as (f_{ON}, f_{OFF}) when its ON-Set and OFF-Set are f_{ON} and f_{OFF}, respectively.

2.3 SPFD

To discuss SPFDs, we need to define what it means to distinguish a pair of functions.

Definition 1 For two logic functions f and g, if $f(X)$ always becomes 1 for all primary input vectors X where $g(X)$ becomes 1, f is said to include g, also written $g \leq f$, or $g \Rightarrow f$. Note that “f includes g” \Leftrightarrow $g \cdot \overline{f} = 0$.

Definition 2 If one of the following two conditions is satisfied, a function f is said to distinguish a pair of functions g_1 and g_2.

- f includes g_1, and \overline{f} includes g_2. $(g_1 \leq f \leq g_2)$
- f includes g_2, and \overline{f} includes g_1. $(g_2 \leq f \leq g_1)$

In other words, f is said to distinguish g_1 and g_2 when one of ON-Set and OFF-Set of f includes g_1 and the other includes g_2.

Now, we can formalize an SPFD as follows.

Definition 3 SPFD (Set of Pairs of Functions to be Distinguished) is a set of pairs of functions that can be represented as $\{(g_{ia}, g_{ib}), (g_{ia}, g_{ib}), \ldots, (g_{ia}, g_{ib})\}$.

We also define the following terminology.

Definition 4 For an SPFD = $\{(g_{ia}, g_{ib}), (g_{ia}, g_{ib}), \ldots, (g_{ia}, g_{ib})\}$, a function f is said to satisfy the SPFD’s condition or simply satisfy the SPFD if f distinguishes g_{ia} and g_{ib} for all i.

Note that it is implicitly assumed that $(g_{ia} \cdot g_{ib} = 0)$ in the above SPFD; otherwise, no function can distinguish g_{ia} and g_{ib}.

In the example shown in Figures 1 and 2, suppose we implement the sub-circuit shown as the dotted rectangle into one LUT which is called N_4. Let also the functional flexibility of N_4 be the same as CSPF$_4$ in Figure 2. Then, the algorithm in [7] calculates SPFD$_{[3,4]}$ as $\{(g_{i1}, g_{i1b}), (g_{i2}, g_{i2b})\}$, where g_{i1}, g_{i1b}, g_{i2} and g_{i2b} are as shown in Figure 3.

The functions that satisfy SPFD$_{[3,4]}$ are functions whose intuitive truth tables are as follows.

- the values corresponding to A and \overline{A} in the truth table shown as “$SPFD_{[3,4]}$” in Figure 3 must be different (one is 1 and the other is 0).
- the values corresponding to B and \overline{B} in the truth table shown as “$SPFD_{[3,4]}$” in Figure 3 must be different (one is 1 and the other is 0).

Therefore, we can see that f_3' in Figure 3 satisfies SPFD$_{[3,4]}$. Since f_3' is not included in either CSPF$_{[3,4]}$ in Figure 2 or the simple negation of CSPF$_{[3,4]}$, we cannot replace f_3 with f_3' if we use CSPF$_{[3,4]}$ to represent the functional flexibility.

2.4 Calculation of SPFDs and CSPFs

In our method, we calculate SPFDs and CSPFs by the original methods [7] and [8], respectively. They are calculated from the primary outputs toward the primary inputs as follows:

- For a primary output node N_i, set SPFD$_i$ as $\{(f_i, f_i')\}$, and CSPF$_i$ as $\{f_i, f_i'\}$.
- For node N_i, we can calculate SPFD$_i$ (CSPF$_i$) by merging all the functional flexibility of the fanout connections of N_i. We refer the readers to the original papers [7] and [8] for the detail.
- From SPFD$_i$ (CSPF$_i$), we can calculate the SPFDs (CSPFs) of the fanin connections of N_i by the methods in [7] and [8], respectively.

3 Overview of our proposed scheme

3.1 A motivational example

In our proposed scheme, we implement a combinatorial logic circuit that has the following two parts: (1) Non-programmable part consisting of conventional gates, and (2) programmable part consisting of LUTs and MUXs. We call...
this kind of circuits specifically as **Partially-Programmable Circuits** (PPCs). Figure 4 shows an example. Some of the primary inputs may be connected to the both parts, and each primary output can be from either part. Also there may be connections from the programmable part to the non-programmable part, and/or vice versa.

A PPC can be described as a Boolean network (as shown in Figure 5) where we can have the following three types of nodes:

- Conventional logic gates, e.g., AND/OR/NOT,
- LUTs whose internal functionality can be reconfigured,
- MUXs whose select lines are controlled by programmable memory cells.

Suppose we can notice the following facts for the circuit (without dotted lines) in Figure 5. (We will explain how we can know that below.)

- If we add a connection from N_5 to N_0, and then reconfigure the functionality of LUTs N_8 and N_9 appropriately, the connection from $C_{7,8}$ becomes redundant.
- If we add a connection from N_5 to N_4, and then reconfigure the functionality of LUT N_4 appropriately, the connection from $C_{7,4}$ becomes redundant.
- If we add a connection from N_2 to N_4, and then reconfigure the functionality of LUT N_4 appropriately, the connection from $C_{1,4}$ becomes redundant.

Therefore, in the above situation, our scheme adds the dotted connections and MUX N_3 as shown in the figure. Then, we can bypass one of the following defects.

- If there is a defect at the connection from $C_{7,8}$, we can bypass the defect by selecting the connection from N_5 at N_3, and reconfiguring the functionality of N_4 appropriately. A stuck-at-fault occurs at the same time on the both $C_{7,8}$ and $C_{7,4}$ because they are connected. Nevertheless, we assume a defect may occur on one of the connections independently, because there is, for example, an open fault.
 - If there is a defect at any input of N_7 (or even a defect in N_7 itself), we can bypass the defect by the above two adjustments.
 - If there is a defect at the connection from $C_{1,4}$, we can bypass the defect by selecting the connection from N_2 at N_5, and reconfiguring the functionality of N_4 appropriately.

Accordingly, in the above circuit (with the added dotted lines), $C_{7,8}$, $C_{7,4}$, $C_{1,4}$ and the input connections to N_7, $C_{5,6}$ and $C_{6,7}$ as well as the added connections ($C_{5,9}$, $C_{5,3}$, $C_{2,3}$ and $C_{3,4}$). Note that we do not need the two input connections of N_4 from N_2 and N_5 at the same time because we suppose a single defect in the circuit. Therefore, we do not increase the number of inputs of N_4 which results to an area penalty; we just put a MUX before N_4 to select a necessary input between the two inputs depending on a defect.

3.2 Intuitive difference from DMR

Note that all the robust connections in our scheme are not redundant at the same time, because we can bypass only a single fault at one of the robust connections at one time, i.e., we may not deal with multiple faults at the same time and thus they cannot be redundant at the same time. On the other hand, all the connections in one of the duplicated modules are all redundant at the same time in nature in the DMR scheme. This is a key observation of the difference between our scheme and the DMR scheme; the overhead of our scheme may be much lower because we consider only a single fault in a circuit. Even so we can expect to increase the yield greatly because the probability of having a single fault should be much larger than having multiple faults in standard LSI manufacturing. Thus, we expect our scheme may provide a better trade-off point between the area/performance overhead and the yield than the simple DMR scheme.

3.3 Problem Formulation

Now it should be clear what we want to do in this paper: **Our Problem.**

Given a conventional combinatorial circuit, our problem is to design a PPC of the same functionality so that the ratio of robust connections is as high as possible.

4 Our procedure to increase robust connections

4.1 Conversion between SPFDs and CSPFs

Unlike the previous SPFD-based circuit transformation method [7], we need to calculate both SPFDs and CSPFs at
the same time because our circuits contain LUTs and conventional gates. Thus we need to convert between SPFDs and CSPFs during the above calculation. This can be done as follows:

SPFD to CSPF. Suppose N_i is an LUT, and one of its fanin, N_l, is a conventional gate. Then, we can calculate the functional flexibility of $C_{[i,j]}$ as an SPFD, but in order to propagate it toward the inputs of N_i we need to convert it to a CSPF. Without loss of generality, let $SPFD_{[i,j]} = \{(g_{a1}, g_{b1}), (g_{a2}, g_{b2}), \ldots, (g_{an}, g_{bn})\}$, where f_i includes g_{ak} and f_j includes g_{bk} for all k. Then, we convert the above SPFD to $CPFD_{[i,j]} = (f_{ON}, f_{OFF})$ where $f_{ON} = \sum_m g_{am}$ and $f_{OFF} = \sum_m g_{bm}$. Note that any function included in $CPFD_{[i,j]}$ satisfies $SPFD_{[i,j]}$.

CSPF to SPFD. If N_j is a conventional gate, the functionality of each fanin connection of N_j is calculated as a CSPF. Then, if one of its fanin node, N_i, is an LUT, we need to convert $CPFD_{[i,j]} = (f_{ON}, f_{OFF})$ to an SPFD to proceed the above calculation of the functional flexibility in a circuit. This is easy; we just let $SPFD_{[i,j]} = \{(f_{ON}, f_{OFF})\}$.

4.2 Our proposed method to generate PPCs

Now we are ready to explain our proposed procedure to increase robust connections in a given circuit.

In our procedure, we first generate an initial PPC from a given circuit as follows. We assume to use k-input LUTs in the final implementation.

Generation of an initial PPC.

Step 1 Map the given circuit into a $(k−1)$-input LUT networks. This can be done by any technology mapper.

Step 2 We select some of the LUTs by some heuristics. Then, we restore the original conventional gates for unselected LUTs.

It is desirable that LUTs in a PPC have the following features:

Feature 1: An LUT should be useful to increase the number of robust connections, i.e., some connections becomes redundant if we reconfigure the functionality of the LUT.

Feature 2: An LUT does not degrade the circuit performance too much.

Considering Feature 1, we consider it to be appropriate to select the following LUTs:

- An LUT which is near to the primary outputs.
- An LUT which is on a re-convergent point in the circuit.

Considering Feature 2, we can consider a heuristic should not select an LUT which is on a critical path.

After generating initial PPC (without MUXs), we add redundant connections to increase robust connections in the PPC by the procedure as shown in Figure 6. We explain the procedure by using Figure 7. In the procedure, we try to make each connection, $C_{[i,j]}$, in the given circuit robust in the outer loop (line 1 to 25). Suppose we are now proceeding $C_{[i,j]}$ in the circuit in Figure 7. In the loop between lines 2 and 10, we calculate CSPFs/SPFDs of the transitive fanout nodes of N_j (the nodes in the dotted area in the figure). We select each node, N_m, in the area from the primary outputs towards N_j. Then, if N_m is an LUT as the figure, we try to add a redundant connection at lines 4 and 5. By adding an connection, we expect $C_{[i,j]}$ becomes redundant. After processing all the transitive fanout nodes of N_j, we finish the loop between lines 2 and 10.

Even by the above loop, if we cannot make $C_{[i,j]}$ redundant, we should remove all the added connections in the above loop at line 18. Even if $C_{[i,j]}$ becomes redundant, there may be some added connections which do not contribute to make $C_{[i,j]}$ redundant. Such connections are removed at line 14.

Finally, if the number of fanin connections exceeds k at a LUT by adding connections, we add a MUX before the LUT to select a necessary input between the added (redundant) inputs. This is done in the loop between lines 21 to 25. Note that we add a redundant connection to one LUT at most once in the loop between lines 2 and 10 for processing $C_{[i,j]}$ in the
outer loop. However, we may add a connection to the same LUT when we are processing a different $C_{i',j'}$ in the outer loop. Thus, we may need a MUX. We would like to remind readers of the example in Section 3, where we use a MUX. This means that we can use only one added input connection to each LUT when we try to fix a defect. Thus, when we propagate SPFDs (CSPFs) at line 6 (at line 8), respectively, we ignore the (previously) added input connections.

We would like to note that we can consider many other procedure to transform PPCs; the procedure in Figure 6 is just one of them.

5 Preliminary experiments

To evaluate how our method can increase the number of robust connections, we did the following preliminary experiments.

Step 1: We map some of MCNC benchmark circuits[12] into 6-input LUT networks. To do so, we use the recommended SIS (a system for sequential circuit synthesis of UC Berkeley)[13] technology mapper commands.

Step 2: We generate initial PPCs such that the LUTs at the primary outputs are selected.

Step 3: For each LUT, we add $(6-k)$ connections so that some of the original inputs to the LUT become redundant.

Unlike our transformation method (described in Section 4) where we utilize MUXs, we just use 6-input LUTs (without MUXs) for the final implementation in order for the simplicity of the experiments. For example, in the case of $k = 4$, we can add two connections to each LUT.

After the above circuit transformation, we count the original input connections to all the LUTs of the following two types: (a) connections that can become redundant by reconfiguring the functionality of LUTs, and (b) the other connections.

We report the number (a) and (b) for the three cases: $k = 3, 4, 5$ in Table 1. In the table, "-" indicates we cannot complete the transformation because of the explosion of BDDs. From the table, we can observe that we indeed make some connections robust by (even) the above simple transformation.

6 Conclusions

We propose to use Partially-Programmable Circuits (PPCs) to increase the yield of LSIs with low overhead compared to previous approaches. We expect that our proposed circuit transformation method increases the number of robust connections in PPCs, which apparently results in higher yield. Our preliminary experiments justify our expectation; we found that some connections indeed become redundant in some benchmark circuits.

Our future work is obviously to implement our circuit transformation method, and to evaluate its performance.

References