
Equivalence Checking of Loops before and after Pipelining by Applying

Symbolic Simulation and Induction

Shanghua Gao1, Takeshi Matsumoto2, Hiroaki Yoshida2,3, Masahiro Fujita2,3

1 Department of Electronics Engineering, University of Tokyo
2 VLSI Design and Education Center, University of Tokyo

2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan, 113-0032
3 Core Research for Evolutional Sciense and Technology, JST

{gao,matsumoto,hiroaki}@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract— When applications contain large loops,

high level synthesis often takes advantage of software

pipelining technique in order to improve the perfor-

mance. High level synthesis with pipelining utilization

needs complicated algorithms. So it is desired to check

its correctness. In this paper, we propose a novel ap-

proach for equivalence checking of loops before and

after pipelining. The proposed approach applies a

combination of symbolic simulation technique and in-

duction method. We develop a prototype equivalence

checker based on the approach. The experimental re-

sults show that our proposed method can verify the

equivalence of loops before and after pipelining.

I. Introduction

High level synthesis (HLS) is an essential step in
system-level design. It automatically generates register-
transfer-level or gate-level designs from behavioral de-
scriptions written in high-level design language such as
C or C++. In many cases, the behavioral descriptions,
for example, digital signal processing algorithms, contain
large loops that are critical for the total execution time.
In order to improve the performance of HLS, software
pipelining technique, which can accelerate the execution
of loops, is often utilized. In this paper, we call the high
level synthesis which takes advantages of software pipelin-
ing technique as pipeline synthesis.

Since pipeline synthesis needs complicated algorithms,
the synthesis result may contain bugs even if the syn-
thesis is performed automatically. In addition, designers
may manually optimize the result of pipeline synthesis.
In both cases, it is desired to check the correctness of
pipeline synthesis. However, it is not an easy task be-
cause of the following two reasons: (1) the existence of
loops. Although unrolling the loops may enable the ver-
ification process, it takes long time for verification if the
loop body is large and/or the loop has a large number
of iterations. Furthermore, verification methods that un-
roll loops could not cope with the cases of infinite loops.

(2) pipelined executions. In pipelined loops, different it-
erations of a loop are executed in parallel, which makes
it easy to cause resource conflict and easy to violate the
dependence across iterations.

To perform formal equivalence checking, symbolic sim-
ulation based methods are widely used[1, 2]. Dur-
ing symbolic simulation, they collect all equivalent
(sub)expressions in both of the designs under verification
and put them into an equivalence class. If a pair of out-
puts is put into the same equivalence class at the end
of symbolic simulation, the equivalence is proved. In [5],
symbolic simulation based equivalence checking between
designs of HLS is proposed. It translates two designs un-
der verification into FSMD (Finite State Machine with
Data) and verifies the equivalence by extracting loop in-
variants. In general, finding invariants needs a lot of com-
putational effort, hence, takes long time. In our work, the
invariants are given from the synthesis result and proved
using symbolic simulation and induction. This is possi-
ble because our target of the verification is only two loops
whose input/output equivalence can be defined by design-
ers with constant throughput and latency. Therefore, we
do not have to consider invariants extraction. Recently, in
[3, 4], equivalence checking of parallelization or synchro-
nization design is proposed. However, it cannot verify the
equivalence of pipelining since their target is the schedul-
ing of behaviors that are assigned to different modules.

In this paper, we propose a novel formal verification
method for equivalence checking of loops before and af-
ter pipelining. The proposed method uses a combination
of symbolic simulation technique and induction method.
It has the following four advantages: (a) it performs the
verification without unrolling the loops, (b) it can also
deal with infinite loops, (c) its computation complexity
is much less than that of methods that unroll loops, and
(d) at the same time, it checks whether the pipelining
result obeys the across-iteration dependence or not. In
addition, we put forward to check whether the pipelining
result contains resource conflicts or not before perform-
ing symbolic simulation. This could reduce the verifica-

tion time since if the synthesis result contains resource
conflict, we already can judge that the loops before and
after pipelining are not equivalent. At present we have
developed a prototype equivalence checker based on the
proposed method. In the experiment, in addition to the
pipelining results obtained from automatic pipeline syn-
thesizer, we also prepare some examples by hand where
we intentionally insert some bugs that make the pipelined
loop unequivalent to the original loop before pipelining.
The experimental results show that the developed equiv-
alence checker can detect such unequivalence.

The rest of this paper is organized as follows. Section
2 formulates the verification problem. Section 3 discusses
the proposed solution method. Section 4 shows the ex-
perimental result and Section 5 gives the conclusion.

II. Problem Formulation

We need to check the equivalence between loops written
in high-level design description such as C-based languages
(in this work, we assume the original loops are written
in C language) and its pipelined one. In this section,
we formulate the equivalence of two loops before/after
pipelining.

A. Loop before Pipelining

In this paper, we assume that a body of a given loop
(i.e. a set of statements inside the loop) consists of assign-
ments and arithmetic/logic computations for variables
and arrays. The given loop is transformed into a depen-
dence graph representation. In this work, we use low level
virtual machine (LLVM) compiler infrastructure for the
transformation.

The dependence graph of an innermost loop consists of
a set of four elements (DG = {V, E, d, δ}). V = {vi|i =
0, ..., nv} is a set of nodes of the graph, where each node
vi ∈ V corresponds to an arithmetic or logic operation in
the loop. E = {ej|j = 0, ..., ne} is a set of edges, where
each edge ej = (vi1, vi2) represents a dependence from
vi1 to vi2. d(vi) is the computation delay of an operation
vi. δ(vi1, vi2) represents a distance function that assigns
a non-negative integer to each edge (vi1, vi2) ∈ E. This
value indicates that an operation vi2 of Ith iteration de-
pends on an operation vi1 of (I − δ(vi1, vi2))th iteration.
So, if the dependence from vi1 to vi2 is within the same it-
eration, δ(vi1, vi2) equals to zero. If the dependence from
vi1 to vi2 is across from an iteration to another, δ(vi1, vi2)
is an integer larger than zero.

The dependence graph is nothing but a graph-based
representation of the original loops in C language. Each
operation of loops in C language has one-to-one corre-
spondence to the node of the dependence graph. And so
does the relationship between the operations of loops and
the edges of dependence graph. As an example, Figure
1(a) gives a loop in C source code and Figure 1(b) gives
its corresponding dependence graph.

(b) Dependence graph(a) A loop body in C language

n1:+ n2:*

n3:*

in1 in2

out

in3

distance=1

Fig. 1. A dependence graph of a loop

B. Loop after Pipelining

The pipelining result of loops depends on the target
architecture on which the original loops are mapped.
Here, we describe the architecture with a set of func-
tional units (FUs) FU = {fui|i = 1, 2, ..., nfu}, a set
of registers Reg = {rj |j = 1, 2, ..., nr}, and a set of wires
W = {wl|l = 1, 2, ..., nw} that connect them.

The pipeline synthesis is to map the original loops onto
the target array-based architecture. It contains the fol-
lowing sub-tasks: (1) Scheduling, which assigns for each
operation a time slot at which the operation is scheduled.
(2) FU binding, which assigns for each operation a FU
on which the operation is executed. (3) Placement, which
determines the location of each FU. (4) Routing, which
determines by which wire(s) a data is transferred from
its source FU/register to its destination FU/register. (5)
Register binding, which assigns for each variable (a) reg-
ister(s) at which its data is stored.

Therefore, the output of pipeline synthesis of loops con-
tains the results of scheduling, binding, placement and
routing. In the pipelined loop, each iteration has the same
schedule, and is initiated a fixed time intervals later than
the previous iteration. This fixed time intervals is termed
initiation interval (II).

The results of pipelining consist of the following infor-
mation.

• On which FU and at which time step an operation vi

in the original loops is mapped.

• By which register and which wires and at which time
step a data dependence ej in the original loops is
realized.

Below, the correspondence between the original loop and
its pipelined one is defined.

1. Each operation vi of kth iteration of the original
loop vi[k] (where k = 1, 2, ..., n) is corresponding to
the pipelining results (fu(vi[1]), t(vi[1]) + II × (k −
1)), which means vi of kth iteration is executed on
fu(vi[1]) at time step t(vi[1]) + II × (k − 1).

2. Each edge ej = (vi1, vi2) of kth iteration ej[k] is cor-
responding to the pipeline results {(rj1, tp1+II×(k−

1)), (rj2, tp2+II×(k−1)), ..., (rjm , tpm+II×(k−1))}
and {(wl1, ts1 + II × (k − 1)), (wl2, ts2 + II × (k −
1)), ..., (wln, tsn + II × (k − 1))}. Here, {(rj1, tp1 +
II×(k−1)), (rj2, tp2+II×(k−1)), ..., (rjm, tpm+II×
(k− 1))} represents the register binding result which
means that the output of operation vi1 is stored in
register rj1 at time step tp1 + II × (k − 1), stored
in register rj2 at time step tp2 + II × (k − 1), and
so on. {(wl1, ts1 + II × (k − 1)), (wl2, ts2 + II × (k −
1)), ..., (wln, tsn+II×(k−1))} represents the routing
result which means that the output of operation vi1 is
transferred by wire wl1 at time step ts1 +II×(k−1),
transferred by wire wl2 at time step ts2 +II×(k−1),
and so on.

Here, we illustrate the results of the pipelined loops.
Assume that the original loop which contains three op-
erations (as in Figure 1) is going to be mapped on an
architecture which contains two functional units (as in
Figure 2(a)). The pipelining result is given in the follow-
ing forms:

1. Scheduling and placement result for operations can
be expressed as: (1) n1[k] : (1 + 2 × (k − 1), FU1)

(2) n2[k] : (2 + 2 × (k − 1), FU2)

(3) n3[k] : (3 + 2 × (k − 1), FU2).

2. There are six data transfers, and their register bind-
ing and routing results can be expressed as:

(1) e(in1, n1)[k] : {(0 + 2 × (k − 1), r1)}
(2) e(in2, n1)[k] : {(0 + 2 × (k − 1), r2)}]
(3) e(in3, n2)[k] : {(0 + 2× (k − 1), r3), (1 + 2× (k −
1), r3)}
(4) e(n1, n3)[k] : {(1 + 2 × (k − 1), r1), (2 + 2 × (k −
1), w1), (2 + 2 × (k − 1), r4)}
(5) e(n2, n3)[k] : {(2 + 2 × (k − 1), r5)}
(6) e(n3, out)[k] : {(3 + 2 × (k − 1), r4)}
Please notice that only data transfers, whose source
FU and destination FU are not in the same location,
need to use wires.

For easier understanding, we also give the mapping re-
sult on the architecture as in Figure 2(b), and the pipelin-
ing result as in Figure 2(c).

C. Equivalence between Loops before/after Pipelining

From the correspondence between loops before/after
pipelining described in the previous subsection, we define
the following equivalences.

Definition 1 (Equivalence of Input Signal) For ev-
ery k, an input signal inp of kth iteration of the original
loop (i.e. inp[k]) is equivalent to an input signal inq at
time step C1 + II × (k − 1) (i.e. inq[C1 + II × (k − 1)]),
where C1 is a constant non-negative integer.

FU 1 FU 2

n1:+

n3:*

n2:*

in1 in2 in3

CS1

CS2

CS3

r1 r2 r3

r4 r5

r3
r1

r4
CS4

CS5

out

w 1

Ite ra tion 1

Ite ra tion 2

(c) Synthesis result

r4

FU 1 FU 2
in1 in2 in3

r1 r2 r3

r4 r5

r3
r1

r4

ou t

w 1
n1 n2

n3

r1 r2 r4 r5r3

w 1

(b) Mapping result

FU 1 FU 2

(a) Architecture

R EGR EG

n1:+

n2:*

n3:*

Fig. 2. A synthesis result

Definition 2 (Equivalence of Output Signal)
For every k, an output signal outp of kth iteration
of the original loop (i.e. outp[k]) is equivalent to an
output signal outq at time step C2 + II × (k − 1) (i.e.
xq[C2+II×(k−1)]), where C2 is a constant non-negative
integer.

We can extend such kind of equivalence definition
for a set of signals. If input/output signals in Sp =
{sp1, ..., spn} are equivalent to the corresponding signals
in Sq = {sq1, ..., sqn} for C = C1, ..., Cn, we denote it as
Sp ≡ Sq[C] in the later sections.

D. Problem Definition

The equivalence checking problem of loop before and
after pipelining is defined as below:
Given an equivalence of input signals between the orig-
inal loop and its pipelined one INp ≡ INq[C1] and an
equivalence of output signals OUTp ≡ OUTq[C2],
prove (INp ≡ INq[C1] ⇒ OUTp ≡ OUTq[C2]).
If it is proved, then the result of the verification is equiv-
alent, otherwise the result is not equivalent.

The equivalences of the input and output signals are
either generated from the results of pipelining automati-
cally, or manually specified by designers. In both cases,
the result will be false if the given equivalences are not
correct. Note that our proposed method checks the equiv-
alence specified by designers, and does not generate the
equivalence to be proved automatically. However, in prac-
tical, the equivalence to be proved is strongly desired to
be generated automatically, although it is not included in
this paper.

III. Proposed Method

In this section, we present our proposed method for the
equivalence checking problem in detail. Basically speak-
ing, the proposed method is based on symbolic simulation

and induction. Having an observation that if there exists
resource conflict in the pipelining results, the pipelined
execution of loops is mistaken, and the loops after pipelin-
ing is not equivalent to the original loops before pipelin-
ing. Thus, to reduce verification time, before performing
equivalence checking, we would like to check whether the
pipelining results contain resource conflict or not.

A. Checking of resource conflict

In the pipelined execution, the operations scheduled
at time steps T = {k ∗ II + p|k = 0, 1, 2, ..., n, II =
1, 2, ..., m, p = 0, 1, 2, ..., II−1} are executed concurrently.
Let us name p, where p ∈ [0, II − 1], a rolled time step.
Then, the resource constraint requires that for each re-
source, at every rolled time step p, the resource is not
used more than one time.

As stated in Section II., the results of pipelined loop
are given from the point of view of operations and edges
of original loop. If we can rearrange the results from the
point of view of resources (FU/Register/Wire), then we
can check whether there exists resource conflict or not
easily. The rearranged results of pipelined loops contain
the following information:

• For each FU, which operations are placed to this FU
and at which time step.

• For each register, which variables are bound to this
register and at which time step.

• For each wire, which variables are mapped to this
wire and at which time step.

For the example in Figure 2, the results from the point
of view of resources can be rewritten as follows:

1. FU1 : {(n1[k], 1+2×(k−1))} for FU1, which means
that operation n1[k] of kth iteration is to be executed
on FU1 at cycle 1 + 2 × (k − 1).

FU2 : {(n2[k], 2+2×(k−1)), (n3[k], 3+2×(k−1))}
for FU2.

2. w1 : {(n1[k], 2 + 2 × (k − 1))} for wire w1, which
means that the output of operation n1[k] is going to
be transferred by wire w1 at time step 2+2×(k−1).

3. (1) r1 : {in1[k], 0+2×(k−1)), (n1[k], 1+2×(k−1))}
for register r1. It means that the input signal in1[k]
is stored to register r1 at time step 0 + 2 × (k − 1),
and that the output of operation n1[k] is stored to
register r1 at time step 1 + 2 × (k − 1).

(2) r2 : {in2[k], 0 + 2 × (k − 1))} for register r2.

(3) r3 : {(in3[k], 0+2×(k−1)), (in3[k], 1+2×(k−1))}
for register r3.

(4) r4 : {(n1[k], 2+2×(k−1)), (n3[k], 3+2×(k−1))}
for register r4.

(5) r5 : {(n2[k], 2 + 2 × (k − 1))} for register r5.

After rearranging the pipelining result like this, we can
check the resource conflict problem very easily. For each
resource, at any rolled time step p, where p ∈ [0, II − 1],
check whether it is used more than one time or not. If
for a certain resource, it is used more than one time, then
we can judge that the scheduling result contains resource
conflict. As for this example, the II equals two and there
is no resource conflict in the result.

B. Application of Symbolic Simulation and Induction for
Verification of Loops before and after Pipelining

In this section, we propose a method to check loops
before and after pipelining for the given equivalence of
input and output signals. We apply a combination of
symbolic simulation technique and induction method.

We perform the equivalence checking without unrolling
the loops. The pipelined loop has following characteris-
tics: (1) Every iteration has the same schedule, and (2)
Every iteration starts some fixed time intervals (namely,
II) later than the previous iteration, in other words, the
II is a constant. These characteristics enable us to apply
induction method. Assume the distances of dependence
that are included in the dependence graph of the origi-
nal loops are D = {d1, d2, ..., dr}. Here, we denote the
maximum distance as dmax. Then, assuming the given
equivalence of the input signals, the proposed method try
to prove the given equivalence by induction as follows.

• Prove the base case Assume the equivalence of the
input signals of all 1st,...,dmaxth iterations, prove the
equivalence of the output signals and the recurrent
output signals of all 1st,...,(dmax)th iterations.

• Prove the induction step Assume the equivalence of
the input signals of kth iteration and the equivalence
of the recurrent output signals of each (k − d)th it-
erations, where d ∈ D, prove the equivalence of the
output signals and recurrent output signals of kth it-
eration.

If the above two conditions are proved by symbolic sim-
ulation based equivalence checking method, then we can
say that the equivalence of the output signals is satisfied
for every iteration of the loop execution.

To prove the equivalence, we perform the equivalence
checking by using symbolic simulation technique, where
each value of a variable and each operation among vari-
ables are treated as a symbol. At present, we have de-
veloped a prototype symbolic simulator for the equiva-
lence checking of loops before and after pipelining. In the
symbolic simulation based equivalence checking method,
all equivalent (sub)expressions are collected in the same
EqvClass. If two different EqvClasses are proved to be
equivalent by substitution, they are merged into a single
EqvClass. Below, we explain how to apply symbolic sim-
ulation based method to prove the induction step with
the loop examples shown in Figures 1 and 2.

1. First, by applying symbolic simulation of kth itera-
tion of the original loop written in high level design
language, EqvClasses are generated. We generate an
equivalence class for each statement included in the
loop. Figure 3 illustrates this EqvClass generation.
For the original loop shown in Figure 3(a), total three
EqvClasses are generated for kth iteration as shown
in Figure 3(b).

Fig. 3. Generated EqvClasses for the original loop of kth iteration

2. Then, in the same way, EqvClasses are generated for
kth iteration of the pipelined loop. Different from the
original loop written in high-level design language,
the synthesized loop is already mapped to hardware
resources. Therefore, all such resources including
FUs, registers, and wires are symbolically simulated
for each time step from the start of kth iteration to
the end. In the example of Figure 4(a), total nine
EqvClasses of the time steps from 2k − 2 to 2k + 2
are generated.

3. Finally, EqvClasses coming from the assumptions are
added. They consist of two parts: (1) the equiva-
lence of the input signals of kth iteration, and (2) the
equivalence of the recurrent output signals of each
(k − d)th iteration, where d ∈ D. For the exam-
ple, EqvClasses corresponding to the assumptions are
shown as Figure 5(a), and the target equivalence that
will be proved is shown as Figure 5(b).

Then, with the EqvClasses from the symbolic simulation
of both the original loops and the pipelined loop of kth

iteration, EqvClass merge is performed until we cannot
find any more EqvClass that can be merged. As a result,
if the equivalence of the output signals of kth iteration is
proved, we can say that the induction step is successfully
proved.

FU 1 FU 2

n1:+

n3:*

n2:*

in1 in2 in3

CS(2k-3)

CS(2k-2)

CS(2k-1)

r1 r2 r3

r4 r5

r3
r1

r4
CS(2k)

CS(2k+1)

ou t

w 1

Ite ra tion k -1

Ite ra tion k

r4

FU 1 FU 2
in1 in2 in3

r1 r2 r3

r4 r5

r3
r1

r4

ou t

w 1

n1:+

n2:*

n3:*

Fig. 4. Generated EqvClasses for the pipelined loop of kth

iteration

IV. Experimental Result

A prototype equivalence checker for loops before and
after pipelining has been implemented in c++/linux envi-
ronment. The implementation of this equivalence checker
is completely separate from the automatic pipeline syn-
thesizer. The results of pipeline synthesis of loops are
recorded in a file. The equivalence checker reads this file,
and another file that records original loop in C descrip-
tion. and generates equivalence classes for both loops un-
der verification by performing symbolic simulation. The
experiment is carried out on a PC with Pentium 4 3.2E
GHz processor and 2GB memory.

The examples used in this experiment consist of four
digital signal algorithms. In particular, iir is an infinite
impulse response filter. wavelet is a part of kernel loops in
the wavelet transform. idct is a two dimensional inverse
discrete cosine transform, and jfdctfst is a forward DCT
used in MPEG4.

Table I shows the experimental result. In this table,
the first column refers to the examples used in the exper-

Fig. 5. Initial condition and equivalence condition for iteration k

iment. The second column refers to the checking result,
namely, the pipelined loop is equivalent to the original
loop or not. The third column refers to the run time for
the equivalence checking in unit of second, and the last
column gives some necessary remarks.

In order to test our developed equivalence checker, be-
sides the pipelined result obtained from pipeline synthe-
sizer automatically, we also make some examples by hand,
labeled with a (or two) asterisk(s). As for examples with
an asterisk, we intentionally change the pipelining results
so that some resource conflicts, such as FU/register/bus
conflicts, occur in the pipelined loops. As for examples
with two asterisks, we intentionally change the pipelin-
ing results so that some bugs occur, for example, a vari-
able fails to be saved to a register at some time step.
In the table, the remark Reg binding means that there
are bugs in register binding, in other words, a variable is
not saved at some time step. The remark Routing means
that there are bugs in the routing result, namely, some
data is not transferred successfully to its destination FU.
The experimental results show that our developed equiv-
alence checker can detect the unequivalence of examples
we make by hand. For the pipelined loops obtained from
the pipeline synthesizer, they are proved to be equivalent
to the original loops before pipelining. As for the runtime,
the equivalence checking of all the examples is finished in
less than 1 second.

V. Conclusion

We have proposed an approach to check the equiva-
lence of loops before and after pipelining. The approach is
based on induction method and symbolic simulation tech-
nique. It performs the equivalence checking without un-
rolling loops, which enables us to verify loops having large
number of iterations in short time, since the computation
effort to check the equivalence will significantly increase
if loops are unrolled. At the same time, we check the
resource conflict in the pipelined and synthesized loops.
This is useful to reduce verification time since if there

TABLE I
Experimental results of formal verification

Example Op Result Time (s) Remark
iir 24 Proved 0.13 —
iir* 24 Not Proved 0.1 Reg conflict
iir** 24 Not Proved 0.19 Reg binding
wavelet 30 Proved 0.2 —
wavelet* 30 Not Proved 0.19 FU conflict
wavelet** 30 Not Proved 0.24 Reg binding
idct 53 Proved 0.13 —
idct* 53 Not Proved 0.12 Wire conflict
idct** 53 Not Proved 0.2 Routing
jfdctfst 56 Proved 0.22 —
jfdctfst* 56 Not Proved 0.14 Wire conflict
jfdctfst** 56 Not Proved 0.18 Reg binding
jfdctfst 2 111 Proved 0.23 —
jfdctfst 3 166 Proved 0.28 —
jfdctfst 4 221 Proved 0.31 —

exists resource conflict, we need not perform the sym-
bolic simulation any more. In the experiment, we verified
several loop examples before and after pipelining includ-
ing ones that bugs are intentionally inserted. The results
showed that our developed prototype equivalence checker
detected such unequivalence in very short runtime.

References

[1] G. Ritter, “Formal Sequential Equivalence Checking of Digi-
tal Systems by Symbolic Simulation,” PhD thesis, Darmastadt
University of Technology and Universite Joseph Fourier, 2000.

[2] H. Saito, T. Ogawa, T. Sakunkonchak, M. Fujita, and T. Nanya,
“An Equivalence Checking Methodology for Hardware Oriented
C-based Specification,” Proc. of International Workshop on
High Level Design Validation and Test, pp.139–144, 2002.

[3] S. Abdi and D. Gajski, “A Formalism for Functionally Pre-
serving System Level Transformations,” Proc. of Asia South
Pacific Design Automation Conference 2005, pp.139–144, Jan-
uary 2005.

[4] S. Abdi and D. Gajski, “Functional Validation of System Level
Static Scheduling,” Proc. of Design, Automation and Test in
Europe, pp.542–547, March 2005.

[5] P. Ashar, A. Raghunathan, A. Gupta, and S. Bhattacharya,
“Verification of Scheduling in the Presence of Loops Using Un-
interpreted Symbolic Simulation,” Proc. of 1999 International
Conference on Computer Design, pp.458–466, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [594.992 841.890]
>> setpagedevice

