
LOGIC SYNTHESIS FOR PLA WITH 2-INPUT LOGIC ELEMENTS

Hiroaki Yoshida†, Hiroaki Yamaoka†, Makoto Ikeda†, and Kunihiro Asada††

†Department of Electronic Engineering, University of Tokyo
††VLSI Design and Education Center(VDEC), University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

ABSTRACT

In this paper, we present a new logic synthesis method for
PLA with 2-input logic elements. A PLA with 2-input logic
elements can achieve low-power dissipation and high-speed
operation by using latch sense-amplifiers and a charge shar-
ing scheme. In addition, an arbitrary 2-input logic function
is conveniently implemented in place of the conventional
AND/OR planes. Therefore it can realize some classes of
logic functions in a smaller circuit area. Since the pro-
posed method makes full use of the existing multiple-valued
logic minimization algorithms along with a new logic ex-
traction technique for 2-input functions, it can be easily im-
plemented and can handle practical circuits. The method
has been implemented and the experimental results are pre-
sented.

1. INTRODUCTION

In the past two decades, Programmable Logic Arrays
(PLAs) have been frequently used because of the advan-
tages such as high-speed operation, easy to implement and
modify, and accurate area and performance predictability.
Recently, PLAs have emerged again as an efficient style for
implementing high performance designs. For example, the
IBM 1-GHz PowerPC processor used PLAs to implement
control logic[1]. Khatri et al. proposed a VLSI design
methodology using a network of PLAs[2]. Their scheme
can dramatically reduce the cross-talk between the signal
wires with a significant improvement of area and perfor-
mance.

On the other hand, the conventional PLA implementa-
tions are relatively large in comparison to the implementa-
tion styles which realize multi-level logic. To overcome this
drawback, some variant forms of PLA which implement
Boolean functions efficiently have been proposed, such as
three-level PLA and PLA with two-input decoders. Gener-
ally, these variants are slower.

In this paper, a logic synthesis method for PLA with 2-
input logic elements is presented. This is a generalization
of the method for AND-XOR-OR type sense-amplifying
PLA[3]. Since our method is based on multiple-valued logic

AND plane

OR plane

x1

x2

x3

x4

f1

f2

f3

LE

LE
LE LE LE

LE LE

LE

LE

LE

Fig. 1. PLA with 2-input logic elements.

and makes full use of the existing algorithms, it can be eas-
ily implemented and can handle practical circuits.

2. PLA WITH 2-INPUT LOGIC ELEMENTS

The PLA with 2-input logic elements can achieve low-
power dissipation and high-speed operation by using latch
sense-amplifiers and a charge sharing scheme[4]. As illus-
trated in Fig. 1, some AND/OR cells can be replaced with 2-
input logic cells, which realize arbitrary 2-input logic func-
tions denoted by LE in the figure. Since the replacement is
achieved by reconnecting some local wires, there is almost
no effect on area and delay. The output of AND-plane is the
Boolean AND of the outputs of logic elements, and the out-
put of OR-plane is the Boolean OR of the outputs of logic
elements. That is, the present PLA realizes LE-AND-LE-
OR 4-level logic.

It is well known that the synthesis method for a PLA
with input decoders, which is based on the multiple-valued
minimization, can reduce the number of the product terms
[5]. The PLA with 2-input logic elements can be viewed
as a PLA with 2-input decoders in AND- and OR-plane, as
illustrated in Fig. 2. Therefore, the present PLA can realize
Boolean functions more efficiently than PLA with 2-input
decoders in only AND-plane.



AND plane

OR plane

x1

x2

x3

x4

f1

f2

f3

D
E

C
O

D
E

R
D

E
C

O
D

E
R

DECODER DECODER

Fig. 2. PLA with decoders.

3. LOGIC SYNTHESIS FOR PLA WITH 2-INPUT
LOGIC ELEMENTS

3.1. Definitions

Let Xi be a variable taking a value from the set Pi =

{0, . . . , pi−1}. A literal XSi
i represents the Boolean function

XSi
i =

{
0 if Xi � Si

1 if Xi ∈ Si

where Si is a subset of Pi . The complement of the literal

X
Si

i is the literal XSi
i . A product term is a Boolean product

of literals. A sum-of-products is a Boolean sum of prod-
uct terms. The supercube of product terms S and T is the
product term

XS1∪T1

1 XS2∪T2

2 · · ·XSn∪Tn
n

which is the smallest product term containing both S and
T. Similarly, the supercube of a sum-of-products F is the
smallest product term containing every product term of F.
The cofactor ST of a product term S with respect to a prod-
uct term T is

ST =

{
0 if Si ∩ Ti = ∅ ∃i
XS1∪T1

1 XS2∪T2
2 · · ·XSn∪Tn

n otherwise.

Similarly, the cofactor FS of a sum-of-products F with re-
spect to a product term S is the sum of the cofactor of each
product term of F with respect to S.

3.2. Overall Flow

As presented in [5], the output signals of AND-plane
correspond to the products of 4-valued literals. Therefore,

logic elements in OR-plane can generate an arbitrary func-
tion of two product terms. Let S and T be product terms,
then the functions to be generated by logic elements in OR-
plane are categorized as follows: 1) S, 2) S, 3) S ·T, 4) ST,
5) S ⊕ T or S ⊕ T. These functions are referred to as the
LE-terms of type 1–5 respectively. The expressions which
can be realized by LE-PLA can be viewed as the sum of
LE-terms. Note that the other functions, which are not cato-
gorized above, are redundant because they can be expressed
by the sum of LE-terms. The objective of our method is to
minimize the number of product terms needed.

The basic idea of our approach is simple. It finds LE-
terms contained in given Boolean functions, and then per-
forms the minimization considering them. The next two
sections describe them in detail.

3.3. Extraction of LE-terms

The most important step in our synthesis flow is to find
LE-terms such that a given Boolean function f contains
them. Since LE-terms of type 1 are implicants of a func-
tion f , we are interested in how to find LE-terms of the
other types. The remainder of this section describes how
to extract LE-terms of each type.

type 2: The complement of a product term can be viewed

as the sum of literals (e.g.X{1,2,3}1 X{0,2}2 = X{0}1 + X{1,3}2 ). This
type of LE-term can easily be obtained by picking up all
product terms which consist of a literal and complementing
them.

type 3: The product of two complements of products can
be viewed as the product of two sum of literals. This type of
LE-term can be obtained as follows: 1) picking up all prod-
uct terms which consist of one or two literals, and 2) fac-
toring them. For factoring, we utilize the multiple-valued
factorization algorithm presented in [6]. For example, con-
sider the following sum-of-products

F = X{0}1 X{1,2}3 + X{0,1,3}2 X{1,2}3 + X{1}1 .

By factoring and complementing, an LE-term of type 3 is
obtained as

F = (X{0,1}1 + X{0,1,3}2 )(X{2}1 + X{1,2}3 )

= X{2,3}1 X{2}2 · X{0,1,3}1 X{0,3}3 .

type 4: The extraction of LE-terms of type 4 is based on
the following theorem:

Theorem 3.1 Let S = XS1
1 XS2

2 · · ·XSn
n and T be cubes and

F be a sum-of-products. Then,

FS ⊆ T ⇐⇒ F ⊇ ST

where FS is the cofactors of F with respect to a cube S .



Given: a sum-of-products F
Procedure cube gen

C = {}
for each product term XS1

1 XS2
2 · · ·XSn

n in F
for each 1 ≤ i ≤ n

for all subset T of Si

C = C ∪ {XS1
1 XS2

2 · · ·XSi∪T
i · · · XSn

n }
end for

end for
end for
return C

end Procedure

Fig. 3. Cube generation procedure.

This theorem states that once a cube S is given, a cube T
which satisfies a condition F ⊇ ST is obtained. Since we
may be interested in the smallest cube T, the supercube of
FS can be used as T. Since there are 24n possible cubes
where n is the number of variables, we cannot examine all
of them practically. To overcome this difficulty, we have
developed a heuristic technique shown in Fig. 3. The num-
ber of the cubes generated by this technique is reduced to at
most 15mn where m is the number of the cubes in a given
sum-of-products. To illustrate how to obtain LE-terms of
this type, consider the sum-of-products

F = X{0}1 X{3}2 X{0,1}3 + X{0}1 X{1}2 + X{1,2}1 X{1,3}2

and let the cube S be X{0,1,2}1 X{1,3}2 . The supercube of FS is
calculated as follows.

supercube(FS) = X{0}1 X{3}2 X{2,3}3

Finally, we have an LE-term of type 4

X{0,1,2}1 X{1,3}2 · X{0}1 X{3}2 X{2,3}3 .

type 5: In the same way as type 4, LE-terms of type 5 can
be extracted by using the following theorem and corollary.

Theorem 3.2 Let S = XS1

1 XS2

2 · · ·XSn
n and T be cubes and

F be a sum-of-products. Then,

FS ⊆ T ⊆ F
X

S1
1

F
X

S2
2
· · ·F

X
Sn
n
⇐⇒ F ⊇ S ⊕ T

where FS and F
X

Sk
k

are the cofactors of F with respect to a

cube S and a literal XSk

k respectively.

Corollary 3.1 Let S = XS1

1 XS2

2 · · ·XSn
n and T be cubes and

F be a sum-of-products. Then,

F
X

S1
1

F
X

S2
2
· · · F

X
Sn
n
⊆ T ⊆ FS ⇐⇒ F ⊇ S ⊕ T

where FS and F
X

Sk
k

are the cofactors of F with respect to a

cube S and a literal XSk

k respectively.

Given: a sum-of-products F
Procedure LE-PLA

X = {}
Extract LE-terms of type 2 and type 3, and put them into X.
C = cube gen(F)
for each S = XS1

1 XS2
2 · · ·XSn

n ∈ C
T = supercube(FS)
X = X ∪ {ST}
if S satifies FS ⊆ F

X
S1
1

F
X

S2
2
· · · F

X
Sn
n

then

Simplify FS with F
X

S1
1

F
X

S2
2
· · · F

X
Sn
n

as a don’t care set

and obtain T.
X = X ∪ {S ⊕ T}

end if
end for
G = 0
for each LE-term Tk in X

Create a new variable Pk to represent Tk.
G = G+ (Tk ⊕ Pk)

end for
Simplify F with G as a don’t care set and obtain FLE.
Replace Pk in FLE with Tk.
return FLE

end Procedure

Fig. 4. Synthesis procedure.

A cube S is also generated by the procedure shown in Fig.
3. Since it is impractical to enumerate all of the cubes
which satisfies the above conditions, we simplify FS with
F

X
S1
1

F
X

S2
2
· · · F

X
Sn
n

as a don’t careset, and obtain a cube T.

3.4. Synthesis with Extracted LE-terms

Our synthesis procedure is similar to the method pre-
sented in [3]. The details of this procedure are shown in
Fig. 4. In the procedure, we utilize the technique used in
Boolean division [7] to synthesize a given Boolean function
with extracted LE-terms. For example, suppose a Boolean
function such as

F = X{0}1 X{0,3}3 + X{0,3}2 X{2,3}3 + X{2,3}1 + X{1}3

and the extracted LE-terms are

X{0,1}1 X{0,2,3}3 and X{1,2,3}1 · X{0,1}1 X{1,2}2 X{2,3}3 .

We create new variables P1 and P2 to represent each LE-
terms, and form the don’t care set

G = (X{0,1}1 X{0,2,3}3 ⊕ P1) + (X{1,2,3}1 · X{0,1}1 X{1,2}2 X{2,3}3 ⊕ P2).

By simplifying F with G as a don’t care set, we obtain the
synthesized expression

FLE = X{0,2,3}1 X{0,3}3 + P2

= X{0,2,3}1 X{0,3}3 + X{1,2,3}1 · X{0,1}1 X{1,2}2 X{2,3}3 .



Table 1. Experimental results.

circuit AND-OR LE-AND-OR AND-LE-OR LE-AND-LE-OR
#products time[sec] #products time[sec] #products time[sec] #products time[sec]

Z5xp1 65 0.1 53 0.1 62 0.6 52 2.0
add6 355 0.5 37 0.1 325 93.2 37 1.5
addm4 200 0.4 109 0.3 193 4.9 99 13.4
adr4 75 0.1 17 0.0 69 0.7 17 0.1
dist 123 0.1 75 0.1 120 2.3 70 4.8
f51m 77 0.1 51 0.1 69 0.4 48 2.0
l8err 52 0.1 39 0.0 49 0.6 38 1.0
m181 42 0.1 30 0.1 40 0.2 28 14.6
mlp4 128 0.2 97 0.1 124 1.3 92 25.6
rd73 127 0.0 37 0.0 113 5.0 34 1.4
root 57 0.1 42 0.0 52 0.9 40 1.4
sqr6 49 0.0 42 0.0 49 0.1 40 0.3

total 1350 1.8 629 0.9 1265 110.2 595 68.1

4. EXPERIMENTAL RESULTS

The method described in the paper has been implemented
as a part of ESPRESSO-MV[8]. Table 1 shows the results
on the math PLA benchmark circuits. In the table, LE-
AND-OR, AND-LE-OR, and LE-AND-LE-ORcorrespond to
PLAs which have logic elements in AND-plane, OR-plane,
and both planes respectively. The input variable assign-
ments for LE-AND-OR and LE-AND-LE-OR type PLAs
were performed by using the heuristic algorithm[5] which is
implemented in ESPRESSO-MV. The results show that LE-
AND-LE-OR type PLA can realize the Boolean functions
in the least product terms among the four types of PLAs.
As for the other circuits such as indust and random, our
method and ESPRESSO-MV are both inefficient. This may
indicate that PLA with logic elements, including PLA with
input encoders, is suitable for implementing mathematical
functions.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a logic synthesis method for
PLA with 2-input logic elements. Our method utilizes the
existing algorithms such as multiple-valued minimization
and factoring along with a new logic extraction techniques.
The experimental results show that the present PLA can ef-
ficiently implement Boolean functions. Since our method
doesn’t take account of the sharing of the product terms be-
tween output functions, further improvements can be made.
In the future, we plan to develop an algorithm to take it into
account.

6. ACKNOWLEDGEMENT

The authors would like to thank Prof. Masahiro Fujita at
Univ. of Tokyo for helpful discussions.

7. REFERENCES

[1] S. Posluszny, N. Aoki, D. Boerstler, J. Burns, S. Dhong,
U. Ghoshal, P. Hofstee, D. LaPotin, K. Lee, D. Meltzer,
H. Ngo, K. Nowka, J. Silberman, O. Takahashi, and I. Vo,
“Design Methodology for a 1.0 GHz Microprocessor,” in
Proc. IEEE Int. Conf. Computer Design, pp. 17–23, Oct.
1998.

[2] S. P. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Cross-talk Immune VLSI Design using a Network of PLAs
Embedded in a Regular Layout Fabric,” in Proc. IEEE/ACM
Int. Conf. Computer-Aided Design, pp. 412–418, Nov. 2000.

[3] H. Yoshida, H. Yamaoka, M. Ikeda, and K. Asada, “Logic
Synthesis for AND-XOR-OR type Sense-Amplifying PLA,”
in Proc. IEEE Int. Conf. VLSI Design & Asia South Pacific
Design Automation Conf., pp. 166–171, Jan. 2002.

[4] H. Yamaoka, M. Ikeda, and K. Asada, “A High-Speed PLA
Using Array Logic Circuits with Latch Sense Amplifiers and
a Charge Sharing Scheme,” in Proc. IEEE Asia South Pacific
Design Automation Conf., pp. 3–4, Jan. 2001.

[5] T. Sasao, “Input Variable Assignment and Output Phase Op-
timization of PLA’s,” IEEE Trans. Computer, vol. C-28, no.
9, pp. 879–894, Oct. 1984.

[6] L. Lavagno, S. Malik, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “MIS-MV: Optimization of Multi-level Logic
with Multiple-valued Inputs,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, pp. 560–563, Nov. 1990.

[7] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang, “MIS: A Multiple-Level Logic Optimization
System,” IEEE Trans. Conputer-Aided Design, vol. CAD-6,
no. 6, pp. 1062–1081, Nov. 1987.

[8] Richard L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-
Valued Minimization for PLA Optimization,” IEEE Trans.
Conputer-Aided Design, vol. CAD-6, no. 5, pp. 727–750,
Sept. 1987.


