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Abstract

SpecC language is designated to handle the design of
entire system from specification to implementation and of
hardware/software co-design. Concurrency is one of the
features of SpecC which expresses the parallel execution of
processes. Describing the systems which contain concurrent
behaviors would have some data exchanging or transfer-
ring among them. Therefore, the synchronization semantics
(noti fy/wait) of events should be incorporated. The
actual design, which is usually sophisticated by its char-
acteristic and functionalities, may contain a bunch of event
synchronization codes. This will make the design difficult
and time-consuming to verify. In this paper, we intro-
duce a technique which helps verifying the synchronization
of events in SpecC. The original SpecC code containing
synchronization semantics is parsed and translated into
a boolean SpecC code. The difference decision diagrams
(DDDs) is used to verify for event synchronization on
boolean SpecC code. The counter examples for tracing back
to the original source are given when the verification results
turn out to be unsatisfied. Here we also introduce idea on
automatically refinement when the results are unsatisfied and
preset some preliminary results.

1: Introduction

Semiconductor technology has been growing rapidly, and
entire systems can be realized on single LSIs as embedded
systems or System-on-a-Chip (SoC). Designing SoC is a
process of the whole system design flow from specification
to implementation which is also a process of both hard-
ware and software development. Concurrency is becoming
common-exist in describing a system design, both from the
hardware and software aspects. The collaboration of parallel
execution of behaviors/processes is fundamental to meet
the design requirement and such collaboration is properly
accomplished by realizing with the synchronization of those
behaviors/processes. In a system design, synchronization
might be oftenly exist and distributed throughout the design.
Verifying the synchronization correctness in such a case may
be difficult and significantly time-consuming.

The size of the design is one of the major problems in
the verification field. When the design becomes larger, it is

usually unable to verify due to the memory explosion or the
limitation of the capability of the verification tools. Boolean
programs [10] are the software verification technique that
use the idea of the abstraction of the original program codes,
namely those in which all variables and parameters have
boolean type. Verification of the boolean programs, with the
fact that the boolean programs are the subsets of the original
ones, if the results are satisfied, we can directly imply that
the original program codes are also satisfied.

SpecC [1], [2] has been proposed as the standard system-
level design language based on C programming language
which covers the design levels from specification to be-
haviors. It can describe both software and hardware seam-
lessly and a useful tool for rapid prototyping as well.
Recently the semantics of SpecC has been reviewed and
clarified [11]. In this paper, we follow those semantics.
In SpecC, expressing behaviors within semantic par re-
sults in parallel execution of those behaviors. For example,
par{a.main(); b.main();} inFigure 1 implies that
thread a and b are running concurrently (in parallel). Within
behaviors, statements are running in the sequential manner
just like C programming language. The timing constraint
which must be satisfied for the behavior a is Tas <
Tls < Tle < T2s < T2e < Tae, where notations s
and e stand for starting and ending time, respectively. Note
that it is not yet determined that any of “st1 — st2 —
st3”, “st3 — stl — st2”, and “stl — st3 — st2”
is being scheduled. In this case, an ambiguous result, or
even worse, an access violation error could occur since st1
and st3 give the assignment value of the same variable z.
The event manipulation statements, such as not i f y/ wai t
could be applied in order to achieve the synchronization
of any desired scheduling. wai t statement suspends the
current thread from execution until one of the specified
events is noti fy. The two parallel threads a and b as
shown in Figure 2 where the synchronization statements
of noti fy/wait is inserted into Figure 1. The statement
wai t e in thread b suspends the statement st 3 until the
specified event e is notified. That is, it is guaranteed that
statement st 3 is safely executed right after statement st 2.

In this paper, we develop and demonstrate a technique
for the verification of synchronization issues in SpecC
language. The proposed technique applies the idea of the
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boolean program [10]. The abstracted SpecC code (to avoid
confusion with the boolean programs, let us called ‘boolean
SpecC’) is containing the statements that can be expressed
in terms of inequalities of timing of those statements
(Tas < Tls < ...). Hence, we can make use of the
difference decision diagrams (DDDs) [9], a kind of the
decision diagram [8] which can represent the inequalities
efficiently, in order to verify the synchronization issues of
the SpecC programs. SpecC programs are firstly parsed and
translated into the boolean SpecC (the boolean programs
which are generated from SpecC), then, translate those
boolean SpecC into DDD graphs. The idea here is to abstract
any conditions in i f statements of the original programs
with user-defined predicates and translate them into boolean
domain. All statements other than event manipulation and
conditions for i f or swi t ch, and so on, are removed (or
abstracted away). Thus only boolean variables and event
manipulation statements remain in the generated boolean
programs. Here we use boolean programs as a kind of
abstracted descriptions from original SpecC descriptions and
verify them with DDDs, concentrating on verification of
only synchronization issues in SpecC descriptions. Boolean
variables are generated based on user-defined predicates,
which define abstraction functions in verification process.
Right now we are just assuming that predicates are given
by designers (who are describing their designs in SpecC),
but in the future we plan to develop automatic generation
of predicates as well.

When verifying the synchronization of SpecC with DDDs,
if the result turns out to be true, then verification terminates
and the synchronization is satisfied. When the result is
false, however, the counter-example must be provided. This
counter-example gives the trace back to the unsatisfied
source in the original program. The idea for the automati-

cally refinement of the predicates is proposed. We believe
that the implementation of this refinement of predicates
would help the designers to save a lot of time to find errors.

Next section will give some background on the SpecC
synchronization semantics, DDDs and boolean programs.
The proposed verification flow is introduced in section 3.
Some conclusions are in section 4 where we mention also
the future directions for this work as well.

2: Background

In this section, we give an overview of SpecC language,
difference decision diagrams, and some basic concepts of the
boolean programs. The concepts of sequentiality and con-
currency are introduced. Semantics of par which describes
the concurrency in SpecC is described as well as the event
manipulator not i fy/ wai t .

2.1: SpecC Language

The SpecC language has been proposed as a stan-
dard system-level design language for adoption in in-
dustry and academia. It is promoted for standardiza-
tion by the SpecC Technology Open Consortium (STOC,
http://ww. SpecC. org). The SpecC language was
specifically developed to address the issues involved with
system design, including both hardware and software. Built
on top of C language, the de-facto standard for software
development, SpecC supports additional concepts needed
in hardware design and allows IP-centric modeling. Unlike
other system-level languages, the SpecC language precisely
covers the unique requirements for embedded systems de-
sign in an orthogonal manner.

Before clarifying the concurrency between statements,
we have to define the semantics of sequentiality within a
behavior. The definition is as follows. A behavior is defined
on a time interval. Sequential statements in a behavior are
also defined on time intervals which do not overlap one
another and are within the behavior’s interval. For example,
in Figure 1, the beginning time and ending time of behavior
a are Tas and Tae respectively, and those for st 1 and
st 2 are T'ls, T'le, T2s, and T2e. Then, the only constraint
which must be satisfied is

Tas <=Tls < Tle<=T2s <T2e <=Tae

Statements in a behavior are executed sequentially but
not always in continuous ways. That is, a gap may exist
between Tas and T'1s, T'le and T2s, and T2e and Tae.
The lengths of these gaps are decided in non-deterministic
way. Moreover, the lengths of intervals, (T'le — T'1s) and
(T2e — T2s) are non-deterministic as well.

Concurrency among behaviors are able to handle in
SpecC with par{} and notify/wait semantics, see
Figure 1 and 2. In a single-running of behaviors, correctness
of the result is usually independent of the timing of its
execution, and determined solely by the logical correctness



of its functions. However, in the parallel-running behaviors,
it is often the case that execution timing may have a great
affect on the results’ correctness. Results can be various
depending on how the behaviors are interleaved. Therefore,
the synchronization of events are important issue for the
system-level design language. The definition of concurrency
is as follows. The beginning and ending time of all the
behaviors invoked by par statement are the same. Suppose
the beginning and ending time of behavior a and b are Tas
and Tae, and Tbs and Tbe, respectively. Then, the only
constraint which must be satisfied is

Tas = Tbs, Tae = Tbhe

According to these sequentiality and concurrency defined in
SpecC language, all the constraints in Figure 1 description
must be satisfied as follows.
e Tas<=Tls <Tle <=T2s < T2 <=Tae
(sequentiality in a)

e Ths <=T3s < T3e <= Tbhe
(sequentiality in b)

o Tas="Tbs, Tae = Tbe
(concurrency between a and b)

Thenoti fy/wait statements are used for synchroniza-
tion. wai t statements suspends their current behavior from
execution and keep waiting until one of the specified events
isnotify. Let focus on the / * New*/ label in Figure 2 of
which the event manipulation statements are inserted to that
of Figure 1. We can see thatwai t e suspends st 3 until the
event e is notified by noti fy e. As for the sequentiality,
noti fy e is scheduled right after the completion of st 2
(T2e <= Thotifys). The only constraint for a single event
synchronization is

Twaite < Tnotifys

2.2: Difference Decision Diagrams

As a part of formal verification, model checking [3]
is extensively used to verify the system which can be
expressed into finite states. McMillan [7] introduced the
symbolic representation for the boolean variables which
enhancing the use of decision diagrams, e.g. binary decision
diagrams [8] (BDDs), to verify systems with very large
number of states. However, if the constraints of model
containing non-boolean, e.g. real-valued, variables, BDDs or
other kind of symbolic representations of boolean variables
are likely to be inefficient.

The idea of DDDs was introduced by Mgller, et al. [9].
Its properties are mostly similar to that of BDDs except that
it could handle the difference constraints, i.e. inequalities of
the form = —y < ¢, where x and y are integer or real-valued
variables and ¢ is a constant. Figure 3 shows a DDD graph
for ~(zx —2 < 1) A(x —y < 0)A(y— 2 < 2). DDDs
share many properties with BDDs: 1) they are ordered,
2) they can be reduced making it possible to check for
tautology and satisfiability in constant time, and 3) many of

the algorithms and techniques for BDDs can be generalized
to apply to DDDs. We use these inequalities to represent
relating execution timings of event manipulation statements,
and use boolean variables to represent control flows in the
SpecC descriptions.

The size of the DDD graphs grow exponentially as the
number of nodes increases. The current implementation of
the DDD package claims that the it can handle the design
up to 2048 variables. However, as we are trying to check
for the capacity that DDD could handle, the memories have
been used up (overflow) before it reaches those limit of 2048
variables.

Fig. 3. Difference decision diagram

2.3: Boolean Program

The study of model checking has been an active area of
research during the past few decades. The method of model
checking was firstly applied for verifying the LSI circuit
systems. The extensive study lead to significant new tech-
niques, e.g. temporal logic and symbolic representations,
which enhance the larger and more complex systems able
to be verified. As the great achievement in applying the
model checking for hardware, such technique has also been
applying for software or even both hardware/software co-
design.

The work on boolean programs has been developing
by conduction of Ball and Rajamani under the Software
(Specifications), Languages, Analysis, and Model checking
(SLAM) project at Microsoft Research [10]. They try to con-
duct the verification on software by realizing the software
as a model such that similar to the hardware FSM. This is
to make the software model concrete to be verified by using
the idea of model checking [3], [7]. The boolean programs
have proved to be a subset of the original programs. What
distinguishes boolean programs from FSMs is that the
boolean programs contain procedures with recursion.

As the characteristic that boolean programs abstract the
programs defined by the source language, the satisfied result
of verifying some properties on the boolean programs en-
sures that those properties are satisfied the original programs
as well.
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Fig. 4. The proposed verification flow

3: Verification Flow

As we mentioned earlier that in both hardware and soft-
ware system design, the concurrency is commonly appeared
throughout the design description. The simple forms of
synchronization which are realized in the design may not
take the developers too many efforts to verify. Unfortunately,
in many cases, the sophisticated forms of synchronization
are likely to be appeared. Manually verifying the synchro-
nization’s correctness of the design would be difficult and
exhausted. In this section, we propose the verification flow
of synchronization in SpecC. The proposed verification flow
is shown in Figure 4.

Our goal is to check whether the given SpecC codes con-
taining concurrent statements par and event manipulation
statements not i fy/ wai t are properly synchronized. We
use the idea of the boolean programs, which represents a
subset of the programs defined by the source language, in
order to verify for the synchronization of events in SpecC.
The flow can be roughly classified into two main stages:
verifying and refinement stage. Note that the sub-section
3.1.1-3.1.4 for verifying stage are corresponding to the step
-0 in Figure 4. Step O is to the refinement stage.

The implementation of the proposed technique is at-
tempted to originally established to verify some simple
designs. We are planning to cover the more complex designs,
e.g. the designs that having recursive functions or nested
loops, and to make to whole processes of verification for
synchronization in SpecC, from verifying stage to refine-
ment stage, automatically processed.

3.1: Verifying Stage

First, the SpecC source code must be parsed and trans-
lated into boolean SpecC code. The boolean SpecC code
contains only conditional (i f or swi t ch) and event ma-
nipulation statements. Second, the achieving boolean SpecC
is then parsed and translated into the C++ code which will
be incorporate with the DDD package to verify for the event
synchronization.

1) From SpecC to Boolean SpecC: The boolean programs
was proposed for software model checking. It is shown
that the model itself is expressive enough to capture the
core properties of programs and is amenable to model
checking. A similar idea to the boolean programs is realized
to verify for the SpecC synchronization. Let us assume
that the original SpecC code to be verified is free of
SpecC compilation and syntax errors. This is to avoid an
undesirable results that will occur due to those errors (let
the SpecC language compiler handle this). Then, the SpecC
source code is parsing and translating such that

1) the event manipulation statements are sustained,

2) the conditional statements or predicates of all branch-
ing statements are automatically replaced by dummy
variables, e.g. i f (x > 1) is replaced by i f (C0),
if(y > 3) byif(Cl), and so on,

3) all other statements are abstracted away by replacing

with skip (denote in the boolean SpecC by “...” for
readability)

Let us note again that the output at this step contains
only the boolean variables. This may seem to be too much
abstraction to skip every statement other than conditional
and event manipulation statements. We will, however, show
in the latter sections the way to de-abstract to get more
information over those abstracted part by tracing over the
original SpecC.

2) From Boolean SpecC to C++ with DDD: When
achieving the correct parsed and translated boolean SpecC
code, we again parse and translate to get the outcome in C++
code. The DDD package version 2.0 is used to verify the
synchronization of events in boolean SpecC. The structure
of the generated C++ with enhancement of DDD package
are constructed.

3) Verifying with DDD: Now we have the achieved C++
codes that can be verified using DDD package. The outcome
is then compiled with C++ compiler to verify for the
event synchronization. DDD package provides an ability to
check for the satisfiability of the DDD graphs which called
‘Satisfiabl e function. Users can add properties to be
checked.

The verification at this step is only to make a first
check for any suspicious event that has a chance not to
be synchronized, e.g. the event is seem to be ‘wait” forever.
Some properties to be verified can be accordingly added.
The verification result should be either 1) true, terminates
all processes and returns the synchronization is satisfied or



2) otherwise, continues the process of finding the counter-
example.

In the process of finding such a counter-example, the
validity/satisfiability checker is employed to check for the
predicates that we abstracted with the boolean variables, e.g.
if(x > 1) toif(CO). The program slicing tool may
also be used to trace on the original SpecC codes to find
the causes of unsatisfiability.

4) Verifying with Validity/Satisfiability Checker: All con-
ditions of i f statements in previous stage are abstracted into
propositional boolean variables (Ci) and we verify for the
synchronization without considering about the relationship
among those abstracted predicates. Now, we are going
to take all those predicates into account to further check
whether the unsatisfied result from previous verifying stage
can have a kind of counter-example to trace for errors in the
source program. In verification at this stage, we are using
the following tools to verify and make a refinement of those
predicates.

o Program Slicing: In general, it is served for finding
statements that potentially affect the computation of
a specific variable at specific statement. Here we will
utilize for some variables tracing.

« Standford Validity Checker (SVC): It is a tool used
for validity checking of the boolean formulas. It is
proved to be efficient. We will use it for checking for
the correctness of the decision procedure.

Program slicing is applied to slice to the parts of the codes
that contain the statements that related to the variables in
predicates, for example, the program slicing will use to slice
to the statements that contain the assignment of variable
x for predicate x > 0, and so on. All predicates which
abstracted from all Ci and all related variables are validated
using the SVC. The results for validating can be either of
1) true, and the program terminates with some counter-
examples that witness the errors occur in the synchronization
of events in the designs or 2) otherwise, the program can
stop here and gives the result that the designs are unable to

verify.

3.2: Refinement Stage

At this step, referring to step O in Figure 4, we propose
the method for automatically refining the predicates. Remark
that some constraints can be added to control some variables
on predicates during the refining process. After modified,
the validity checker is used to check the results again.
If the results are satisfied, then program terminates with
some counter-examples. However, if the results turn to
be unsatisfied (false), the refining process keeps running
until it reaches a threshold. Then, program aborts with no
conclusion results. Of which, we do not really know whether
the synchronization in the designs is correct or incorrect. In
this case, the designers have to manually review and modify
the designs by themselves.

We are planning to make the refinement process automat-
ically operate. We do believe that the automatic refinement
will save the designers a lot of time and efforts on finding
some synchronization errors from the whole design.

4: Conclusion and Outlook

We proposed the technique for verifying the synchroniza-
tion of events in SpecC descriptions with the use of DDDs
which is amenable to express the different constraints. The
concept of the boolean programs is applied to abstract
away some details other than the event manipulation and
conditional branching statements. The SpecC code can be
checked for the correctness of the event synchronization
and let users be able to give some constraints to invoke
with the original model from SpecC code. However, up to
this point, there are still some limitations on handling the
original SpecC code, e.g. the looping, passing variables to
a function, recursive functions may not be properly parsed
and translated for verification.

The unsatisfied results of verifying boolean SpecC with
DDDs will be further verified for the correctness of those
abstracted predicates using program slicing and validity
checker. Unfortunately, the tool that can slice through the
SpecC code is not currently available. As the future work,
we intend to make the process of refinement of predicates
automatically run.

As a final remark, the proposed technique clearly defines
synchronization semantics of SpecC descriptions, which is
one of most important issues for system level description
languages.
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